Single Graphical Lasso#
This tutorial demonstrates how to estimate a sparse inverse covariance matrix using the Single Graphical Lasso (SGL) method. This approach identifies conditional dependencies between features (e.g., microbial taxa) by solving an L1-penalized maximum likelihood problem, encouraging sparsity in the precision matrix.
Purpose: Estimates sparse direct associations between microbial taxa
Key characteristics:
Assumes all edges have equal importance
Uses uniform L1 penalty (λ₁) across all potential connections
Identifies direct conditional dependencies in the network
Best for: Initial network exploration and identifying core microbial interactions
Interpretation:
Edges represent direct associations after removing indirect effects
Edge thickness indicates association strength
Network sparsity controlled by λ₁ parameter
May include environment-mediated associations
Step 1: Estimate a Sparse Model#
We begin by estimating the inverse covariance (precision) matrix from a precomputed covariance matrix:
# sparse model
qiime gglasso solve-problem \
--p-n-samples 50 \
--p-lambda1-min 0.001 \
--p-lambda1-max 1 \
--p-n-lambda1 50 \
--p-gamma 0.01 \
--p-latent False \
--i-covariance-matrix data/atacama-table-corr.qza \
--o-solution data/atacama-solution-sgl.qza \
--verbose
Explanation:
--p-n-samples 50
: Number of individuals used to compute the input covariance matrix.--p-lambda1-min
: Lower-bound for the sparsity penalty (λ₁).--p-lambda1-max
: Upper-bound for the sparsity penalty (λ₁).--p-n-lambda1
: Number of grid points between the min and max lambda values.--p-gamma 0.01
: Controls the model selection criterion (e.g., eBIC).--p-latent False
: Indicates that this is a standard graphical lasso (not a latent variable model).--i-covariance-matrix
: Input covariance matrix in QIIME 2 format.--o-solution
: Output artifact containing the estimated sparse inverse covariance matrix.
Step 2: Visualize the Estimated Network#
# visualize the results
qiime gglasso summarize \
--i-solution data/atacama-solution-sgl.qza \
--p-label-size 25pt \
--o-visualization data/sgl-summary.qzv
Explanation:
Generates an interactive QIIME 2 visualization of the estimated network.
--p-label-size 25pt
: Sets the font size of node labels in the network plot.The output
.qzv
file can be viewed using QIIME 2 View.